Review Article

Development of Organ-on-Chip for the Study of Placental Pathologies: A Ten-Year Study of Literature Published

Development of organ-on-chip for the study of placental pathologies

Abstract

Context: The placenta performs a crucial function in nutrient exchange, but studying this tissue poses a number of challenges. Utilizing microfluidic and microfabrication technologies, a 3D placenta-on-a-chip model provides a biomimetic alternative for studying placental diseases and treatments.
Objectives: Aim: To review and analyze the currently available placenta-on-chip data to study placental pathologies in patients.
Methods: By systematically searching the PubMed, Scopus, and Science Direct databases, research papers that employed 3D printing techniques for the development of organoids and Organ-on-Chip (OoC) systems for in vitro experiments were gathered and scrutinized.
Results: When exposed to glucose transfer, placenta-on-a-chip mimics the features of an in vivo human placenta. Microchips have the potential to become a platform for diagnostic purposes for placental diseases and a model for duplicating the important features of these diseases.
Conclusions: The microfluidic placenta-on-a-chip platform holds promise as an affordable solution with versatile applications. However, research is essential to develop a comprehensive in vitro pregnancy model in the future to expand our understanding of feto-maternal communication.

1. Lee JS, Romero R, Han YM, Kim HC, Kim CJ, Hong JS, et al. Placenta-on-a-chip: A novel platform to study the biology of the human placenta. J Matern Fetal Neonatal Med. 2016;29(7):1046-
54. [PubMed ID:26075842]. [PubMed Central ID:PMC5625348].https://doi.org/10.3109/14767058.2015.1038518.
2. Mosavati B, Oleinikov AV, Du E. Development of an organon-a-chip-device for study of placental pathologies. Int J MolKalode R et al.6 Health Tech Asmnt Act. 2023; 7(3).Sci. 2020;21(22). [PubMed ID:33228194]. [PubMed Central ID:PMC7699553]. https://doi.org/10.3390/ijms21228755.
3. Huang X, Anderle P, Hostettler L, Baumann MU, Surbek DV, Ontsouka EC, et al. Identification of placental nutrient transporters associated with intrauterine growth restriction and preeclampsia. BMC Genomics. 2018;19(1):173. [PubMed ID:29499643].[PubMed Central ID:PMC5833046]. https://doi.org/10.1186/s12864-018-4518-z.
4. Delorme-Axford E, Sadovsky Y, Coyne CB. The Placenta as a Barrier to Viral Infections. Annu Rev Virol. 2014;1(1):133-46.[PubMed ID:26958718]. https://doi.org/10.1146/annurev-virology-031413-085524.
5. Liu J, Mosavati B, Oleinikov AV, Du E. Biosensors for detection of human placental pathologies: A review of emerging technologies and current trends. Transl Res. 2019;213:23-49. [PubMed
ID:31170377]. [PubMed Central ID:PMC6783355]. https://doi. org/10.1016/j.trsl.2019.05.002.
6. Schmidt A, Morales-Prieto DM, Pastuschek J, Frohlich K, Markert UR. Only humans have human placentas: molecular differences between mice and humans. J Reprod Immunol. 2015;108:65-71. [PubMed ID:25817465]. https://doi.org/10.1016/j.jri.2015.03.001.
7. Carter AM. Animal models of human placentation--a review. Placenta. 2007;28 Suppl A:S41-7. [PubMed ID:17196252]. https://doi. org/10.1016/j.placenta.2006.11.002.
8. Richardson L, Jeong S, Kim S, Han A, Menon R. Amnion membrane organ-on-chip: An innovative approach to study cellular interactions. FASEB J. 2019;33(8):8945-60. [PubMed ID:31039044]. [PubMed Central ID:PMC6662977]. https://doi.org/10.1096/fj.201900020RR.
9. Myllynen P, Mathiesen L, Weimer M, Annola K, Immonen E,Karttunen V, et al. Preliminary interlaboratory comparison
of the ex vivo dual human placental perfusion system. Reprod Toxicol. 2010;30(1):94-102. [PubMed ID:20434538]. https://doi. org/10.1016/j.reprotox.2010.04.006.
10. Malek A. Ex vivo human placenta models: Transport of immunoglobulin G and its subclasses. Vaccine. 2003;21(24):3362-4. [PubMed ID:12850340]. https://doi.org/10.1016/s0264-410x(03)00333-5.
11. Villano K, Holt R, Zaretsky M, Bawdon R. 77: Maternal transfer of Interleukin-6 in the ex-vivo placental perfusion model. American J Obstetrics Gynecology. 2007;197(6). https://doi.org/10.1016/j. ajog.2007.10.086.
12. Blundell C, Yi YS, Ma L, Tess ER, Farrell MJ, Georgescu A, et al. Placental drug transport-on-a-chip: A microengineered in vitro model of transporter-mediated drug efflux in the human placental barrier. Adv Healthc Mater. 2018;7(2). [PubMed ID:29121458]. [PubMed Central ID:PMC5793852]. https://doi.org/10.1002/adhm.201700786.
13. Gnecco JS, Anders AP, Cliffel D, Pensabene V, Rogers LM, Osteen K, et al. Instrumenting a fetal membrane on a chip as emerging technology for preterm birth research. Curr Pharm Des. 2017;23(40):6115-24. [PubMed ID:28847303]. https://doi.org/10.2174/1381612823666170825142649.
14. Zhu Y, Yin F, Wang H, Wang L, Yuan J, Qin J. Placental barrier-ona-chip: Modeling placental inflammatory responses to bacterial infection. ACS BiomaterSciEng.2018;4(9):335663[PubMedID:33435070].https://doi.org/10.1021/acsbiomaterials.8b00653.
15. Pemathilaka RL, Caplin JD, Aykar SS, Montazami R, Hashemi NN. Placenta-on-a-chip: In vitro study of caffeine transport across placental barrier using liquid chromatography mass spectrometry. Glob Chall. 2019;3(3):1800112 [PubMed ID:31565368]. [PubMed Central ID:PMC6436596]. https://doi.org/10.1002/gch2.201800112.
16. Yin F, Zhu Y, Zhang M, Yu H, Chen W, Qin J. A 3D human placentaon-a-chip model to probe nanoparticle exposure at the placental barrier. Toxicol In Vitro. 2019;54:105-13. [PubMed ID:30248392].https://doi.org/10.1016/j.tiv.2018.08.014.
17. Schuller P, Rothbauer M, Kratz SRA, Höll G, Taus P, Schinnerl M, et
al. A lab-on-a-chip system with an embedded porous membranebased impedance biosensor array for nanoparticle risk assessment on placental Bewo trophoblast cells. Sensors Actuators B:Chemical. 2020;312. https://doi.org/10.1016/j.snb.2020.127946.
18. Cherubini M, Erickson S, Haase K. Modelling the human placental interface in vitro-a review. Micromachines (Basel). 2021;12(8).[PubMed ID:34442506]. [PubMed Central ID:PMC8398961].https://doi.org/10.3390/mi12080884.
19. Kim S, Richardson L, Radnaa E, Chen Z, Rusyn I, Menon R, et al.Molecular mechanisms of environmental toxin cadmium at the feto-maternal interface investigated using an organ-on-chip (FMi-OOC) model. J Hazard Mater. 2022;422:126759. [PubMedID:34391970]. [PubMed Central ID:PMC8595660]. https://doi.org/10.1016/j.jhazmat.2021.126759.
20. Richardson L, Menon R. Proliferative, migratory, and transition properties reveal metastate of human amnion cells. Am J Pathol.2018;188(9):2004-15. [PubMed ID:29981743]. [PubMed Central ID:PMC6119821]. https://doi.org/10.1016/j.ajpath.2018.05.019.
21. Kreuder AE, Bolanos-Rosales A, Palmer C, Thomas A, Geiger MA, Lam T, et al. Inspired by the human placenta: A novel 3dbioprinted membrane system to create barrier models. SciRep. 2020;10(1):15606. [PubMed ID:32973223]. [PubMed Central ID:PMC7515925]. https://doi.org/10.1038/s41598-020-72559-6.
22. Ingber DE. Developmentally inspired human ‘organs on chips’. Development. 2018;145(16). [PubMed ID:29776965 [PubMed Central ID:PMC6124544]. https://doi.org/10.1242/dev.156125.
23. Feneley MR, Burton GJ. Villous composition and membrane thickness in the human placenta at term: A stereological study using unbiased estimators and optimal fixation techniques. Placenta. 1991;12(2):131-42. [PubMed ID:1871071]. https://doi.org/10.1016/0143-4004(91)90017-a.
24. Shah SW, Zhao H, Low SY, McArdle HJ, Hundal HS. Characterization of glucose transport and glucose transporters in the human choriocarcinoma cell line, BeWo. Placenta. 1999;20(8):651-9.[PubMed ID:10527819]. https://doi.org/10.1053/plac.1999.0437.
25. Schneider H, Mohlen KH, Dancis J. Transfer of amino acids across the in vitro perfused human placenta. Pediatr Res. 1979;13(4 Pt1):236-40. [PubMed ID:471582]. https://doi.org/10.1203/00006450-197904000-00005.
26. Mittal R, Woo FW, Castro CS, Cohen MA, Karanxha J, Mittal J, etal. Organ-on-chip models: Implications in drug discovery and clinical applications. J Cell Physiol. 2019;234(6):8352-80. [PubMed ID:30443904]. https://doi.org/10.1002/jcp.27729.
Files
IssueVol 7, No 3 (2023) QRcode
SectionReview Article
DOI https://doi.org/10.18502/htaa.v7i3.14207
Keywords
Placenta organ on chip engineered technologies

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Kalode R, Kalode P. Development of Organ-on-Chip for the Study of Placental Pathologies: A Ten-Year Study of Literature Published. Health Tech Ass Act. 2023;7(3).